
 

 

Abstract – In this paper we present our study on the effects 
on energy efficiency of a mobile system by enhancing our 
energy-efficient TCP variant (E2TCP) with partial reliability. 
Partial reliability is beneficial for multimedia applications 
and is especially attractive in wireless communication 
environments. It allows applications to trade a controlled 
amount of data loss for a higher throughput, lower delays, 
and lower energy consumption. In the design of E2TCP we 
provide solutions to four problem areas in TCP that prevent it 
from reaching high levels of energy-efficiency. We have 
implemented a simulation model of the protocol, and the 
results show that E2TCP has a significant higher energy 
efficiency than TCP. 

I. INTRODUCTION 

The Transport Control Protocol (TCP) is a reliable, end-to-
end, transport protocol that is widely used to support various 
applications. Despite its success as a transport protocol, there 
are certain communication environments and types of 
applications for which the design of TCP is less suitable. 
Prominent examples are wireless communication 
environments and multimedia applications. 

Although TCP is very efficient on wired networks, it has 
been shown to perform poorly on wireless networks in both 
performance and energy efficiency, which are the two most 
prominent issues in current and future mobile systems. In the 
presence of a high packet error rate and periods of 
intermittent connectivity of wireless links, TCP may 
overreact to packet losses, mistaking them for congestion. 
TCP responds to all losses by invoking congestion control 
and avoidance algorithms. Another area in which TCP is less 
suitable, is for those types of applications that can tolerate a 
limited amount of data loss. Examples are multimedia 
applications that encompass transfer of audio, video and 
image data. They place very different requirements on the 
network compared to what the network was originally 
designed for. Most multimedia applications require a service 
with high throughput, low network delays, and low variations 
in these delays. They can however, tolerate a limited amount 
of data loss. TCP offers full reliability through the use of 
retransmissions, but at the expense of increased delays and 
lower throughput.  

To address part of the problems with TCP and UDP the 
partial reliability transport protocol (PRTP) [1] was 
developed. PRTP provides a partially reliable service, i.e. a 

service that does not insist on recovering all, but just some of 
the data loss. As compared to TCP, PRTP enhances the 
service by allowing applications to trade a controlled amount 
of data loss for higher throughput, lower delays, and higher 
energy efficiency. The transport service provided by PRTP 
could be especially beneficial when the channel is lossy and 
round trip times are non-negligible, as can be the case in a 
wireless environment.  

Studies on the energy efficiency of TCP have been very 
limited so far. E.g. [9] analyses the energy consumption 
performance of various versions of TCP. They argue that 
energy efficiency can be improved by avoiding periods of 
bad channel conditions. In fact, this is exactly what the 
window adaptation algorithm of TCP does. However, since 
their model is based on many simplifications, it is unclear 
how accurate their results are. Moreover, in their analysis 
they only considered the energy spent in transmitting data, 
and did not consider energy consumption while the interface 
is idle. Tsaoussidis et al. [8] compared the energy 
performance of several TCP variants. They make fewer 
simplifications, and their results are based on simulations. 
Their results indicate that the energy performance of the 
various TCP variants is fairly similar.  

In this paper we present our study on the effects of enhancing 
our energy efficient TCP variant (E2TCP) [5] with PRTP. We 
will here merely introduce the essential background of 
E2TCP, and present simulation results and compare other 
TCP variants with E2TCP, taking into account both energy 
spend in communication as well as spend in idling. Then we 
will show the effects on energy efficiency when partial 
reliability is used. 

A. E2TCP objectives and assumptions 
E2TCP is suitable for the wireless link between base station 
and mobile host in a split-connection scheme. In a split-
connection scheme errors caused by the wireless link can be 
addressed near the site of their occurrence. The protocol 
makes no assumptions about the link- and media access 
control (MAC) layers, or requires any interaction between 
them. Therefore, the protocol can be used as a drop-in 
replacement for TCP/IP on the mobile host and should be 
usable on all wireless links. All modifications to TCP to 
extend it with PRTP are localized at the receiver.  

B. Energy consumption 
The wireless network interface of a mobile computer 
consumes a significant fraction of the total power [7]. 
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Basically there are two characteristics that influence the 
energy efficiency and overhead of a protocol. The first 
characteristic is the data overhead of a protocol. When a 
protocol uses more bytes to transmit the same amount of 
data, more bytes are wasted, and thus the protocol becomes 
less energy efficient. The second characteristic that 
influences the energy efficiency of a protocol is time 
overhead. In general, the longer the protocol needs to 
transmit the same amount of data, the longer the radio has to 
be active, and consequently the more energy is wasted. 

C. Metrics 
For a given data transmission medium there is a minimum 
amount of energy M that is required to send data from source 
to destination. The actual spent energy is called S. The 
difference between those two values is called W: the amount 
of wasted energy.  Energy efficiency ε then is: 
 ε = M / S (1) 
However, energy efficiency is not always a good metric to 
compare various protocols since it is related to the amount of 
data. Therefore we introduce another metric that is closely 
related to energy efficiency: energy overhead ο. Energy 
overhead is the amount of wasted energy compared to the 
minimum amount of energy, or: 
 ο = W / M (2) 

II. E2TCP 

Because E2TCP is derived of TCP, its architecture and 
mechanisms are roughly the same. On four points, however, 
adjustments were made to increase the energy efficiency of 
the protocol. These points are the reliability requirements, the 
headers, the acknowledgements, and the window 
management [4]. 

A. Partial reliability 
When transmitting streaming media, energy can be saved 
when unwanted retransmits can be avoided. Partial reliability 
provides a way to do this, by enabling the application to set 
the minimum desired reliability of the channel.  

The implementation of partial reliability in E2TCP is rather 
straightforward. PRTP is completely receiver-based, which 
means that all necessary modifications to TCP are localized 
to the receiver. The receiver keeps track of how much data 
was successfully received and how much was lost. An 
application is able to set a certain amount of reliability for 
each connection with a Quality of Service-like parameter. 
This parameter: the reliability level, can be set from 0% to 
100% in one percent steps. When the overall reliability does 
not drop below the limit, the receiver will not ask for a 
retransmission and sends an ack. When the receiver 
encounters lost packets, it checks its current reliability level. 
If it is still above the specified limit, the receiver will falsely 

acknowledge as much lost packets as possible without 
violating the reliability demand, so the sender will not 
retransmit them.  

B. Header format 
E2TCP headers are general much smaller than standard TCP 
headers, and are still robust for errors. Reducing the size of 
the header not only implies that less data has to be 
transmitted; it also makes the packet less susceptive to errors. 
Both effects increase energy efficiency.  

The E2TCP header may contain some of the standard TCP 
fields like source- and destination IP and port numbers, 
sequence and acknowledgement numbers, window, urgent 
pointer, and checksum. Because the source- and destination 
IP addresses and ports are large, and will not change during a 
connection, they will only be sent during connection startup. 
Until the connection is terminated, a one-byte connection 
identifier will be used instead. This is comparable to other 
header compression mechanisms (e.g. [2]). Furthermore 
E2TCP has fields to indicate SACK blocks to support 
selective acknowledgement (SACK). Another optimization is 
realized by having a special field that indicates whether a 
certain option is included in the header or not. Because 
almost all fields in the E2TCP headers are optional and only 
need to be transmitted when they are required, E2TCP 
headers are usually quite small, just 8 bytes. Normal 
acknowledgements will have a size between 8 and 16 bytes 
depending on how many SACK blocks are used. This is 
considerably less than TCP acknowledgements that have a 
size of 40, 50 or 60 bytes (with none, one and two SACK 
blocks respectively) up to a maximum of 80 bytes if more 
options are used. 

C. Selective acknowledgements 
Standard TCP can only generate positive cumulative 
acknowledgements. This means that when the end station 
receives an out-of-order packet (due to packet reordering or 
packet loss) it is unable to send this information to the sender. 
Selective acknowledgements (SACK) can convey 
information to the sender about multiple non-contiguous 
blocks of successfully transmitted segments [6]. E2TCP not 
only supports SACK but also relies on them to effectively 
increase its energy efficiency. Because E2TCP will work on a 
single-hop link and performs local retransmissions, it will 
know when a packet is received out of order, that the 
intermediate packets were lost. Upon noticing out of order 
packets, the receiver will indicate to the sender (with SACK), 
that it has not received the intermediate packets. The sender 
can immediately retransmit the lost packets and does not 
have to wait on timeouts or duplicate acknowledgements. 
This will reduce the time overhead of E2TCP without 
increasing the data overhead. 



 

 
D. Window management 
E2TCP features a window management scheme that is 
optimized for energy efficiency on wireless single-hop links. 
The window management mechanism of E2TCP differs on 
four points from TCP.  

• First of all, E2TCP features immediate retransmits. When 
the receiver indicates it has received an out-of-order 
packet, the sender can immediately retransmit the 
missing packets, because E2TCP will be used on a 
single-hop link and no packet reordering can take place 
on such a link. Under the same conditions standard TCP 
would wait on a timeout before it would retransmit the 
lost packet, causing substantial delays.  

• The second change is that E2TCP takes into account the 
error characteristics of the wireless channel. If few 
errors occur, E2TCP considers this to be the result of 
normal random errors on the wireless link. When lots of 
errors occur, E2TCP considers this to be caused by a 
burst error and drastically reduces its transmission speed 
since the next packets are likely to be lost anyway. This 
way, E2TCP reacts to (burst) errors in a very energy 
efficient way.  

• E2TCP also features a minimum window size, which is 
the third point on which the window management of 
TCP and E2TCP differ. This minimum window size 
causes E2TCP to quickly recuperate after a burst error, 
which will decrease time overhead. 

• The final change to the window management of TCP is 
the use of a retransmission timer. The timers used in 
E2TCP are similar to the transmission timer in TCP, only 
one is used for transmissions and one is used for 
retransmissions. The extra timer increases the 
responsiveness of the protocol to changes on the channel 
and thus decrease time overhead. 

III. SIMULATION 

A. Simulation setup 
To measure the performance and energy efficiency of E2TCP 
and compare the protocol with other versions of TCP (Tahoe, 
Reno and NewReno), an implementation of E2TCP was made 
in ns2. The simulation setup consists of two hosts connected 
by a wireless LAN. Each host is running TCP and together 
they create one TCP connection that connects both hosts. The 
default simulation setup has a bandwidth of 1 Mbps. The 
default delay will be 50 ms, which is an estimation of the 
delays introduced by a typical IEEE 802.11 physical layer, 
link layer and MAC layer combined, based on measurements 
by [3]. The default-simulated traffic is a mass data transfer of 
20 MB in total.  

B. Error model and setup 
All packets on the wireless LAN are transparently routed 
through the error model, which randomly corrupts the 
packets with a chance that corresponds to the error rate of the 
state it is currently in. We use a two-state error model with a 
good state that resembles a high quality channel with some 
modest random noise and a bad state that resembles a burst 
error with a very high error rate. The state will switch 
between the states after a certain time.  
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Figure 1: Data overhead of various protocols in scenario A. 

Byte overhead in scenario B
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Figure 2: Data overhead of various protocols in scenario B. 

We have performed all our simulations using two Scenarios, 
which represent two quite different error characteristics. The 
first Scenario (Scenario A) has a fixed bad state length of 0.1 
second and the good state length varies from 300 seconds to 
1 second. This corresponds to a nearly perfect channel (the 
simulations finish within 300 seconds of simulated time) to a 
very bad channel. In this Scenario the proportions between 



 

 
the good state and bad state length are gradually worsened. In 
the other Scenario (Scenario B) the good state lengths vary 
from 20 to 1 second, with the bad state length always being 
one tenth of the good state length. This allows the protocols 
energy efficiency to be examined with varying bad state 
lengths while the proportions between the good state and bad 
state length remain the same. 

C. Data and time overhead of E2TCP without Partial 
Reliability 
As discussed before, energy efficiency is influenced by both 
time overhead and data overhead. In this simulation setup, we 
evaluate these issues separately, and with full reliability.   
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Figure 3: Time overhead of various protocols in scenario A. 

Time overhead in scenario B

0

100

200

300

400

500

600

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

Ti
m

e 
ov

er
he

ad
 (%

)

Tahoe Reno New Reno E2TCP

Figure 4: Time overhead of various protocols in scenario B. 

As can be seen in Figure 1 and 2, E2TCP has less data 
overhead than the other TCP versions, in both scenarios, at 
all points. This can be attributed to the small headers and its 

optimized window management in combination with 
selective acknowledgements. Especially in scenario A it is 
clear that when the quality of the channel deteriorates, the 
data overhead increases. It is interesting to note the decrease 
in data overhead in scenario B for E2TCP at the right side of 
the graph. Unlike standard TCP, E2TCP does not decrease its 
transmission speed for small burst errors, resulting in a very 
low data overhead.  

The time overhead of E2TCP (Figure 3 and 4) is far less than 
other protocols in all cases. Especially when the quality of 
the channel deteriorates (the right side of the graphs), the 
difference in time overhead between E2TCP and the other 
protocols increases. This means that (considering time 
overhead) E2TCP scales much better than the other protocols 
when the quality of the channel gets worse. 

It should also be clear that the other versions of TCP have 
much more time overhead than data overhead. Note that all 
three standard TCP versions behave the same, which is in 
line with the results presented in [8]. Since Tahoe tends to 
perform slightly better, in the following simulations we will 
compare E2TCP with Tahoe only.  

D. Energy overhead of E2TCP with partial reliability 
In this simulation the partial reliability of E2TCP will be 
examined. The default setup will be used with the following 
protocols: Tahoe, PRTP and E2TCP. Tahoe is of course fully 
reliable. E2TCP will be set to 95% and 90% reliability while 
PRTP will be used at 90% reliability.  

It is only useful to use partial reliability on certain types of 
traffic. Streaming media applications and sometimes mass 
data transfer (images, audio and video) applications are suited 
to adapt to partial reliability. Therefore only the constant bit 
rate and mass data transfer models are used in this 
simulation. The energy overhead for both scenarios is shown 
in Figures 5 and 6. 

From the graph of scenario A, a few things can be deduced. 
First of all, PRTP (with a reliability of 90%) clearly has less 
energy overhead than Tahoe. Another interesting thing to 
note is that both PRTP and E2TCP at 90% reliability score 
(almost) the same independent of the quality of the channel. 
Because of the loose reliability constraints both protocols can 
deal very efficiently with errors. E2TCP with 95% reliability 
clearly has more trouble when the quality of the channel 
worsens because the reliability constraints are tighter. Still it 
manages to surpass PRTP in all but the worst channel 
conditions. 
In scenario B, the last point is also valid. That is: PRTP is 
more efficient than Tahoe, while E2TCP with a reliability of 
95% surpasses the performance of PRTP in all but the worst 
channel conditions. Just like in scenario A, E2TCP with a 
reliability of 90% is the most energy efficient protocol. 

 



 

 

Energy overhead in scenario A
(type of radio: Intermediate)
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Figure 5: Energy overhead of various protocols in scenario A. 

Energy overhead in scenario B
(type of radio: Intermediate)
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Figure 6: Energy overhead of various protocols in scenario B. 

IV. CONCLUSIONS AND RECOMMENDATIONS 

E2TCP is optimized for energy efficiency of wireless 
communications on four points. The first point is the 
acknowledgement scheme of TCP, which is unable to 
provide the sending host with enough information about the 
state of the destination host. E2TCP uses an efficient selective 
acknowledgement mechanism to overcome this problem. 
These selective acknowledgements are also required for the 
second optimization: the window management. This 
optimization is the result of efforts to make TCP aware of 
burst errors. Because burst errors are a major cause of packet 
loss on wireless links and TCP considers all packet loss to be 
the result of congestion, TCP was unable to react to burst 
errors in an energy efficient way. These two optimizations 

cause the greatest decrease in energy overhead: about 75% of 
the total decrease in energy overhead. The third optimization 
is the use of partial reliability to limit unwanted retransmits 
during the transmission of streaming media. This 
optimization is the cause of about 13% of the total decrease 
in energy overhead. The final optimization is the use of 
custom headers, which rely on techniques from header 
compression standards to minimize wasted energy. This 
optimization is the cause of the last 12% of the total decrease 
in energy overhead. 

E2TCP has been compared to standard versions of TCP, like 
Tahoe, Reno and NewReno. From the results can be 
concluded that E2TCP has less energy overhead than TCP for 
each bandwidth/quality of channel combination. In most 
cases TCP even has an energy overhead that is at least twice 
as large as that of E2TCP. Also, E2TCP scales better than 
TCP when channel conditions deteriorate. Other simulation, 
not presented here due to lack of space, show that also on 
traditional metrics like throughput and latency E2TCP 
outperforms the others easily.  
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