

Abstract – In this paper we present our study on the effects
on energy efficiency of a mobile system by enhancing our
energy-efficient TCP variant (E2TCP) with partial reliability.
Partial reliability is beneficial for multimedia applications
and is especially attractive in wireless communication
environments. It allows applications to trade a controlled
amount of data loss for a higher throughput, lower delays,
and lower energy consumption. In the design of E2TCP we
provide solutions to four problem areas in TCP that prevent it
from reaching high levels of energy-efficiency. We have
implemented a simulation model of the protocol, and the
results show that E2TCP has a significant higher energy
efficiency than TCP.

I. INTRODUCTION

The Transport Control Protocol (TCP) is a reliable, end-to-
end, transport protocol that is widely used to support various
applications. Despite its success as a transport protocol, there
are certain communication environments and types of
applications for which the design of TCP is less suitable.
Prominent examples are wireless communication
environments and multimedia applications.

Although TCP is very efficient on wired networks, it has
been shown to perform poorly on wireless networks in both
performance and energy efficiency, which are the two most
prominent issues in current and future mobile systems. In the
presence of a high packet error rate and periods of
intermittent connectivity of wireless links, TCP may
overreact to packet losses, mistaking them for congestion.
TCP responds to all losses by invoking congestion control
and avoidance algorithms. Another area in which TCP is less
suitable, is for those types of applications that can tolerate a
limited amount of data loss. Examples are multimedia
applications that encompass transfer of audio, video and
image data. They place very different requirements on the
network compared to what the network was originally
designed for. Most multimedia applications require a service
with high throughput, low network delays, and low variations
in these delays. They can however, tolerate a limited amount
of data loss. TCP offers full reliability through the use of
retransmissions, but at the expense of increased delays and
lower throughput.

To address part of the problems with TCP and UDP the
partial reliability transport protocol (PRTP) [1] was
developed. PRTP provides a partially reliable service, i.e. a

service that does not insist on recovering all, but just some of
the data loss. As compared to TCP, PRTP enhances the
service by allowing applications to trade a controlled amount
of data loss for higher throughput, lower delays, and higher
energy efficiency. The transport service provided by PRTP
could be especially beneficial when the channel is lossy and
round trip times are non-negligible, as can be the case in a
wireless environment.

Studies on the energy efficiency of TCP have been very
limited so far. E.g. [9] analyses the energy consumption
performance of various versions of TCP. They argue that
energy efficiency can be improved by avoiding periods of
bad channel conditions. In fact, this is exactly what the
window adaptation algorithm of TCP does. However, since
their model is based on many simplifications, it is unclear
how accurate their results are. Moreover, in their analysis
they only considered the energy spent in transmitting data,
and did not consider energy consumption while the interface
is idle. Tsaoussidis et al. [8] compared the energy
performance of several TCP variants. They make fewer
simplifications, and their results are based on simulations.
Their results indicate that the energy performance of the
various TCP variants is fairly similar.

In this paper we present our study on the effects of enhancing
our energy efficient TCP variant (E2TCP) [5] with PRTP. We
will here merely introduce the essential background of
E2TCP, and present simulation results and compare other
TCP variants with E2TCP, taking into account both energy
spend in communication as well as spend in idling. Then we
will show the effects on energy efficiency when partial
reliability is used.

A. E2TCP objectives and assumptions
E2TCP is suitable for the wireless link between base station
and mobile host in a split-connection scheme. In a split-
connection scheme errors caused by the wireless link can be
addressed near the site of their occurrence. The protocol
makes no assumptions about the link- and media access
control (MAC) layers, or requires any interaction between
them. Therefore, the protocol can be used as a drop-in
replacement for TCP/IP on the mobile host and should be
usable on all wireless links. All modifications to TCP to
extend it with PRTP are localized at the receiver.

B. Energy consumption
The wireless network interface of a mobile computer
consumes a significant fraction of the total power [7].

ENHANCING ENERGY EFFICIENT TCP BY PARTIAL RELIABILITY

L. Donckers, P.J.M. Havinga, G.J.M. Smit, L.T. Smit
University of Twente, department of Computer Science,

PO Box 217, 7500 AE Enschede, the Netherlands
havinga@cs.utwente.nl

Basically there are two characteristics that influence the
energy efficiency and overhead of a protocol. The first
characteristic is the data overhead of a protocol. When a
protocol uses more bytes to transmit the same amount of
data, more bytes are wasted, and thus the protocol becomes
less energy efficient. The second characteristic that
influences the energy efficiency of a protocol is time
overhead. In general, the longer the protocol needs to
transmit the same amount of data, the longer the radio has to
be active, and consequently the more energy is wasted.

C. Metrics
For a given data transmission medium there is a minimum
amount of energy M that is required to send data from source
to destination. The actual spent energy is called S. The
difference between those two values is called W: the amount
of wasted energy. Energy efficiency ε then is:
 ε = M / S (1)
However, energy efficiency is not always a good metric to
compare various protocols since it is related to the amount of
data. Therefore we introduce another metric that is closely
related to energy efficiency: energy overhead ο. Energy
overhead is the amount of wasted energy compared to the
minimum amount of energy, or:
 ο = W / M (2)

II. E2TCP

Because E2TCP is derived of TCP, its architecture and
mechanisms are roughly the same. On four points, however,
adjustments were made to increase the energy efficiency of
the protocol. These points are the reliability requirements, the
headers, the acknowledgements, and the window
management [4].

A. Partial reliability
When transmitting streaming media, energy can be saved
when unwanted retransmits can be avoided. Partial reliability
provides a way to do this, by enabling the application to set
the minimum desired reliability of the channel.

The implementation of partial reliability in E2TCP is rather
straightforward. PRTP is completely receiver-based, which
means that all necessary modifications to TCP are localized
to the receiver. The receiver keeps track of how much data
was successfully received and how much was lost. An
application is able to set a certain amount of reliability for
each connection with a Quality of Service-like parameter.
This parameter: the reliability level, can be set from 0% to
100% in one percent steps. When the overall reliability does
not drop below the limit, the receiver will not ask for a
retransmission and sends an ack. When the receiver
encounters lost packets, it checks its current reliability level.
If it is still above the specified limit, the receiver will falsely

acknowledge as much lost packets as possible without
violating the reliability demand, so the sender will not
retransmit them.

B. Header format
E2TCP headers are general much smaller than standard TCP
headers, and are still robust for errors. Reducing the size of
the header not only implies that less data has to be
transmitted; it also makes the packet less susceptive to errors.
Both effects increase energy efficiency.

The E2TCP header may contain some of the standard TCP
fields like source- and destination IP and port numbers,
sequence and acknowledgement numbers, window, urgent
pointer, and checksum. Because the source- and destination
IP addresses and ports are large, and will not change during a
connection, they will only be sent during connection startup.
Until the connection is terminated, a one-byte connection
identifier will be used instead. This is comparable to other
header compression mechanisms (e.g. [2]). Furthermore
E2TCP has fields to indicate SACK blocks to support
selective acknowledgement (SACK). Another optimization is
realized by having a special field that indicates whether a
certain option is included in the header or not. Because
almost all fields in the E2TCP headers are optional and only
need to be transmitted when they are required, E2TCP
headers are usually quite small, just 8 bytes. Normal
acknowledgements will have a size between 8 and 16 bytes
depending on how many SACK blocks are used. This is
considerably less than TCP acknowledgements that have a
size of 40, 50 or 60 bytes (with none, one and two SACK
blocks respectively) up to a maximum of 80 bytes if more
options are used.

C. Selective acknowledgements
Standard TCP can only generate positive cumulative
acknowledgements. This means that when the end station
receives an out-of-order packet (due to packet reordering or
packet loss) it is unable to send this information to the sender.
Selective acknowledgements (SACK) can convey
information to the sender about multiple non-contiguous
blocks of successfully transmitted segments [6]. E2TCP not
only supports SACK but also relies on them to effectively
increase its energy efficiency. Because E2TCP will work on a
single-hop link and performs local retransmissions, it will
know when a packet is received out of order, that the
intermediate packets were lost. Upon noticing out of order
packets, the receiver will indicate to the sender (with SACK),
that it has not received the intermediate packets. The sender
can immediately retransmit the lost packets and does not
have to wait on timeouts or duplicate acknowledgements.
This will reduce the time overhead of E2TCP without
increasing the data overhead.

D. Window management
E2TCP features a window management scheme that is
optimized for energy efficiency on wireless single-hop links.
The window management mechanism of E2TCP differs on
four points from TCP.

• First of all, E2TCP features immediate retransmits. When
the receiver indicates it has received an out-of-order
packet, the sender can immediately retransmit the
missing packets, because E2TCP will be used on a
single-hop link and no packet reordering can take place
on such a link. Under the same conditions standard TCP
would wait on a timeout before it would retransmit the
lost packet, causing substantial delays.

• The second change is that E2TCP takes into account the
error characteristics of the wireless channel. If few
errors occur, E2TCP considers this to be the result of
normal random errors on the wireless link. When lots of
errors occur, E2TCP considers this to be caused by a
burst error and drastically reduces its transmission speed
since the next packets are likely to be lost anyway. This
way, E2TCP reacts to (burst) errors in a very energy
efficient way.

• E2TCP also features a minimum window size, which is
the third point on which the window management of
TCP and E2TCP differ. This minimum window size
causes E2TCP to quickly recuperate after a burst error,
which will decrease time overhead.

• The final change to the window management of TCP is
the use of a retransmission timer. The timers used in
E2TCP are similar to the transmission timer in TCP, only
one is used for transmissions and one is used for
retransmissions. The extra timer increases the
responsiveness of the protocol to changes on the channel
and thus decrease time overhead.

III. SIMULATION

A. Simulation setup
To measure the performance and energy efficiency of E2TCP
and compare the protocol with other versions of TCP (Tahoe,
Reno and NewReno), an implementation of E2TCP was made
in ns2. The simulation setup consists of two hosts connected
by a wireless LAN. Each host is running TCP and together
they create one TCP connection that connects both hosts. The
default simulation setup has a bandwidth of 1 Mbps. The
default delay will be 50 ms, which is an estimation of the
delays introduced by a typical IEEE 802.11 physical layer,
link layer and MAC layer combined, based on measurements
by [3]. The default-simulated traffic is a mass data transfer of
20 MB in total.

B. Error model and setup
All packets on the wireless LAN are transparently routed
through the error model, which randomly corrupts the
packets with a chance that corresponds to the error rate of the
state it is currently in. We use a two-state error model with a
good state that resembles a high quality channel with some
modest random noise and a bad state that resembles a burst
error with a very high error rate. The state will switch
between the states after a certain time.

Byte overhead in scenario A

0

5

10

15

20

25

30

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

By
te

 o
ve

rh
ea

d
(%

)

Tahoe Reno New Reno E2TCP

Figure 1: Data overhead of various protocols in scenario A.

Byte overhead in scenario B

0

5

10

15

20

25

30

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

By
te

 o
ve

rh
ea

d
(%

)

Tahoe Reno New Reno E2TCP

Figure 2: Data overhead of various protocols in scenario B.

We have performed all our simulations using two Scenarios,
which represent two quite different error characteristics. The
first Scenario (Scenario A) has a fixed bad state length of 0.1
second and the good state length varies from 300 seconds to
1 second. This corresponds to a nearly perfect channel (the
simulations finish within 300 seconds of simulated time) to a
very bad channel. In this Scenario the proportions between

the good state and bad state length are gradually worsened. In
the other Scenario (Scenario B) the good state lengths vary
from 20 to 1 second, with the bad state length always being
one tenth of the good state length. This allows the protocols
energy efficiency to be examined with varying bad state
lengths while the proportions between the good state and bad
state length remain the same.

C. Data and time overhead of E2TCP without Partial
Reliability
As discussed before, energy efficiency is influenced by both
time overhead and data overhead. In this simulation setup, we
evaluate these issues separately, and with full reliability.

Time overhead in scenario A

0

100

200

300

400

500

600

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

Ti
m

e
ov

er
he

ad
 (%

)

Tahoe Reno New Reno E2TCP

Figure 3: Time overhead of various protocols in scenario A.

Time overhead in scenario B

0

100

200

300

400

500

600

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

Ti
m

e
ov

er
he

ad
 (%

)

Tahoe Reno New Reno E2TCP

Figure 4: Time overhead of various protocols in scenario B.

As can be seen in Figure 1 and 2, E2TCP has less data
overhead than the other TCP versions, in both scenarios, at
all points. This can be attributed to the small headers and its

optimized window management in combination with
selective acknowledgements. Especially in scenario A it is
clear that when the quality of the channel deteriorates, the
data overhead increases. It is interesting to note the decrease
in data overhead in scenario B for E2TCP at the right side of
the graph. Unlike standard TCP, E2TCP does not decrease its
transmission speed for small burst errors, resulting in a very
low data overhead.

The time overhead of E2TCP (Figure 3 and 4) is far less than
other protocols in all cases. Especially when the quality of
the channel deteriorates (the right side of the graphs), the
difference in time overhead between E2TCP and the other
protocols increases. This means that (considering time
overhead) E2TCP scales much better than the other protocols
when the quality of the channel gets worse.

It should also be clear that the other versions of TCP have
much more time overhead than data overhead. Note that all
three standard TCP versions behave the same, which is in
line with the results presented in [8]. Since Tahoe tends to
perform slightly better, in the following simulations we will
compare E2TCP with Tahoe only.

D. Energy overhead of E2TCP with partial reliability
In this simulation the partial reliability of E2TCP will be
examined. The default setup will be used with the following
protocols: Tahoe, PRTP and E2TCP. Tahoe is of course fully
reliable. E2TCP will be set to 95% and 90% reliability while
PRTP will be used at 90% reliability.

It is only useful to use partial reliability on certain types of
traffic. Streaming media applications and sometimes mass
data transfer (images, audio and video) applications are suited
to adapt to partial reliability. Therefore only the constant bit
rate and mass data transfer models are used in this
simulation. The energy overhead for both scenarios is shown
in Figures 5 and 6.

From the graph of scenario A, a few things can be deduced.
First of all, PRTP (with a reliability of 90%) clearly has less
energy overhead than Tahoe. Another interesting thing to
note is that both PRTP and E2TCP at 90% reliability score
(almost) the same independent of the quality of the channel.
Because of the loose reliability constraints both protocols can
deal very efficiently with errors. E2TCP with 95% reliability
clearly has more trouble when the quality of the channel
worsens because the reliability constraints are tighter. Still it
manages to surpass PRTP in all but the worst channel
conditions.
In scenario B, the last point is also valid. That is: PRTP is
more efficient than Tahoe, while E2TCP with a reliability of
95% surpasses the performance of PRTP in all but the worst
channel conditions. Just like in scenario A, E2TCP with a
reliability of 90% is the most energy efficient protocol.

Energy overhead in scenario A
(type of radio: Intermediate)

0

5

10

15

20

25

30

35

40

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

En
er

gy
 o

ve
rh

ea
d

(%
)

Tahoe PRTP - 90% E2TCP - 95% E2TCP - 90%

Figure 5: Energy overhead of various protocols in scenario A.

Energy overhead in scenario B
(type of radio: Intermediate)

0

5

10

15

20

25

30

35

40

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

En
er

gy
 o

ve
rh

ea
d

(%
)

Tahoe PRTP - 90% E2TCP - 95% E2TCP - 90%

Figure 6: Energy overhead of various protocols in scenario B.

IV. CONCLUSIONS AND RECOMMENDATIONS

E2TCP is optimized for energy efficiency of wireless
communications on four points. The first point is the
acknowledgement scheme of TCP, which is unable to
provide the sending host with enough information about the
state of the destination host. E2TCP uses an efficient selective
acknowledgement mechanism to overcome this problem.
These selective acknowledgements are also required for the
second optimization: the window management. This
optimization is the result of efforts to make TCP aware of
burst errors. Because burst errors are a major cause of packet
loss on wireless links and TCP considers all packet loss to be
the result of congestion, TCP was unable to react to burst
errors in an energy efficient way. These two optimizations

cause the greatest decrease in energy overhead: about 75% of
the total decrease in energy overhead. The third optimization
is the use of partial reliability to limit unwanted retransmits
during the transmission of streaming media. This
optimization is the cause of about 13% of the total decrease
in energy overhead. The final optimization is the use of
custom headers, which rely on techniques from header
compression standards to minimize wasted energy. This
optimization is the cause of the last 12% of the total decrease
in energy overhead.

E2TCP has been compared to standard versions of TCP, like
Tahoe, Reno and NewReno. From the results can be
concluded that E2TCP has less energy overhead than TCP for
each bandwidth/quality of channel combination. In most
cases TCP even has an energy overhead that is at least twice
as large as that of E2TCP. Also, E2TCP scales better than
TCP when channel conditions deteriorate. Other simulation,
not presented here due to lack of space, show that also on
traditional metrics like throughput and latency E2TCP
outperforms the others easily.

REFERENCES

[1] Brunstrom A., Asplund K., Garcia J., “Enhancing TCP
performance by allowing controlled loss”, Proceedings of
SSGRR 2000 computer & e-business conference, L’Aquila,
Italy, August 2000.

[2] Casner S., Jacobson V., “Compressing IP/UDP/RTP headers
for low-speed serial links”, RFC 2508, February 1999

[3] Chen K., “Medium access control of wireless LANs for mobile
computing”, IEEE Network magazine, V. 8 N. 5, September
1994.

[4] Donckers L.: “Energy Efficient TCP”, MSc thesis University of
Twente, department of Computer Science, 2001.

[5] Donckers L., Havinga P.J.M., Smit G.J.M., Smit L.T.: “Energy
Efficient TCP”, Proceedings 2nd Asian International Mobile
Computing conference (AMOC2002), Malaysia, ACM
Sigmobile, ISBN 983-40633-1-8, pp 18-28, May 2002.

[6] Mathis M., Mahdavi J., Floyd S., Romanov S., “TCP selective
acknowledgement options”, RFC 2018, October 1996.

[7] Stemm, M, et al.: “Reducing power consumption of network
interfaces in hand-held devices”, Proceedings mobile
multimedia computing MoMuc-3, Princeton, Sept 1996.

[8] Tsaoussidis V., Badr H., "Energy / Throughput Tradeoffs of
TCP Error Control Strategy", IEEE Symposium on Computers
and Communications, IEEE ISCC 2000, France, 2000.

[9] Zorzi M., Rao R.R.: “Is TCP energy efficient? ”, Proceedings
IEEE MoMuC, November 1999.

